Central limit theorems for multiple Skorohod integrals
نویسنده
چکیده
In this paper, we prove a central limit theorem for a sequence of multiple Skorohod integrals using the techniques of Malliavin calculus. The convergence is stable, and the limit is a conditionally Gaussian random variable. Some applications to sequences of multiple stochastic integrals, and renormalized weighted quadratic variation of the fractional Brownian motion are discussed.
منابع مشابه
Stable convergence of generalized L stochastic integrals and the principle of conditioning
We consider generalized adapted stochastic integrals with respect to independently scattered random measures with second moments, and use a decoupling technique, formulated as a “principle of conditioning”, to study their stable convergence towards mixtures of infinitely divisible distributions. The goal of this paper is to develop the theory. Our results apply, in particular, to Skorohod integ...
متن کاملLimit theorems for multiple stochastic integrals
We show that the general stable convergence results proved in Peccati and Taqqu (2007) for generalized adapted stochastic integrals can be used to obtain limit theorems for multiple stochastic integrals with respect to independently scattered random measures. Several applications are developed in a companion paper (see Peccati and Taqqu, 2008a), where we prove central limit results involving si...
متن کاملON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...
متن کاملIntegral and local limit theorems for level crossings of diffusions and the Skorohod problem
Using a new technique, based on the regularization of a càdlàg process via the double Skorohod map, we obtain limit theorems for integrated numbers of level crossings of diffusions. The results are related to the recent results on the limit theorems for the truncated variation. We also extend to diffusions the classical result of Kasahara on the “local" limit theorem for the number of crossings...
متن کاملStable convergence of generalized stochastic integrals and the principle of conditioning: L theory
Consider generalized adapted stochastic integrals with respect to independently scattered random measures with second moments. We use a decoupling technique, known as the “principle of conditioning”, to study their stable convergence towards mixtures of infinitely divisible distributions. Our results apply, in particular, to multiple integrals with respect to independently scattered and square ...
متن کامل